
Title: Turning Traffic Bad

Subtitle: Using the network and some bad logic to gridlock a city

Authors: Joe Barrett and Steve Walker, Foreground Security

Recently, your authors had the opportunity to take SANS ICS515 as taught by Rob Lee and received

copies of the Cybati kit for simulating control systems. While the class was very educational and a lot of

fun, we both preferred to put on ‘evil’ hats and take a closer look at vulnerabilities in the traffic light

systems as opposed to concentrating on network monitoring. Our goal was to look at the individual HMI,

PLC, and light system as part of a larger scenario and come up with potential avenues that an attacker

might attempt to use to compromise the system for their own goal. One such potential use case is to

turn the lights all green to cause a grid lock, as seen in [this feature movie

clip](https://www.youtube.com/watch?v=ybYQsVnh9QA).

To begin with, we scanned the HMI system (our Cybati VM) as well as the PLC (the Raspberry Pi board

attached to the Cybati kit), looking for potential avenues of attack that would translate to the real world.

Figure 1 - Exposed Ports Before Configuring Logic

Before we load the control system logic into it, we can see that the open ports are SSH, VNC, and X11.

While we would prefer not to see VNC and X11 on an Internet connected host, that’s a topic for a

different blog post. So we went ahead and fired up RexDraw and loaded the sample control system logic

to see how the scenario changed. As you can see, once we had the logic loaded, the Raspberry Pi PLC

was now listening on Modbus/TCP for incoming connections.

Figure 2 - Exposed Ports After Configuring Logic

https://www.youtube.com/watch?v=ybYQsVnh9QA

Attacking Modbus

Through our experience, we have seen numerous examples of Modbus exposed to the business

network. It is a great port to demonstrate this capability through, as attackers can perform a variety of

actions directly on the PLCs using Modbus, while defenders can monitor these connections to quickly

identify abnormal activity. To figure out what we could accomplish with Modbus, we began by using

some open source tools to investigate the PLC.

Figure 3 - Metasploit's modbus_findunitid Plugin - Not Terribly Useful

After striking out using some of the basic tools, we created a modified version of Metasploit’s

modbusclient plugin that would enable us to read a large range of registers on the PLC at once. We

started by trying to read registers 0 through 10 as a sample space.

Figure 4 - Custom Modbus Client Reading a Range of Registers

Through our knowledge of the HMI, we knew that these four registers corresponded to the four

operations possible (Force E-W Intersection, Force N-S Intersection, Automatic, and Blink). The value of

‘1’ at Register 2 corresponded with the ‘Automatic’ operation mode that we knew the PLC was currently

configured to utilize.

Metasploit also gave us the capability to write values back into the Modbus registers, so we spent some

time forcing the various HMI operations over the network. While this was entertaining and

demonstrated some of the risk from exposing Modbus/TCP, we wanted to go farther with our ability to

cause harm to the traffic system. We continued to scan the range of all possible registers in case there

were other options we were missing.

Figure 5 - Discovering Further Registers

We discovered an additional set of readable registers (2048 through 2053) that appeared to correspond

to the six lights (main green, main yellow, main red, side green, side yellow, and side red). We were able

to watch in real-time as those values updated in conjunction with the lights on the Cybati board, so we

knew that we were starting down the right path. We then attempted to write values back into those

registers using the same technique that we had used above to manipulate the HMI functions.

Figure 6 - Attempting to Write to Light Registers

As can be seen, our attempts to write ‘1’ values to enable the lights were unsuccessful. Even though

Metasploit returned successfully after writing the value to a register, a subsequent read operation

revealed that the value had not actually changed. Our first thought was that the registers themselves

were marked as ‘Read-Only’ somehow, so we began to investigate the logic files.

Figure 7 - Register Configuration in RexDraw

All of the registers were configured as read-write registers, so our attempts to modify the values should

have worked, so we began to investigate further. As it turns out, we had to look at the actual program

logic to determine why our modifications failed.

Figure 8 - Input and Output Configuration for Lights

Looking at the program logic in RexDraw, the only times that the MTS__side_green and

MTS__main_green registers are used (which correspond to the Modbus/TCP registers we attempted to

write to) are as output values. This perfectly explains the behavior that we had seen when attempting to

write to the registers; we put data in, but it was immediately overridden with the current state of the

lights and our written value had no impact. At this point, we decided that our attackers would need to

do something a little bit more dangerous in order to achieve their desired end goal – they would have to

modify the program logic on the engineer’s workstation and hope to remain unnoticed.

Making Evil Traffic

To meet this goal, we first had to ensure that our evil program logic performed all of the valid operations

exactly as expected, so that a system operator never noticed anything unusual until we activated our

evil routine. Our second requirement was to ensure that our modifications to the program logic were as

minimal as possible and blended in with the legitimate logic so that our changes were not obvious upon

cursory examination. Finally, we had to ensure that we could easily trigger our ‘attack scenario’ over the

network upon command to accomplish our evil goals.

First, we created two new Modbus/TCP registers that were in sequence with the existing registers for

the traffic lights. We came up with a name that would seem fairly innocuous at first glance and

configured the registers identical to the existing ones. A more accurate name for what we are

implementing would be an ‘override’ register.

Figure 9 - Adding the Two "monitor" Registers

Once the registers were created, we needed to modify the program logic to include them as inputs to

the traffic lights. To accomplish this, we needed to create a few more “OR” blocks and include our new

registers on the input side of the diagram which we also modified so that the colors were similar to the

nearby logic blocks. In this small example, the difference remains obvious. However, if the viewer were

unfamiliar with the original program logic, it would take some time to discover what was added and

why.

Figure 10 - New Program Logic

With this new program logic in place and uploaded to our PLC, the traffic lights continue to operate

exactly as expected. If an operator were to view the HMI for the PLC, it again shows the traffic lights

exactly as it should and all operations (force E-W intersection, force N-S intersection, automatic, and

blink) continue to operate as normal.

However, when our attacker needs to generate a plot-saving city-wide traffic jam, we can gain access to

the control system network and send our malicious commands to the Modbus/TCP interfaces on the

various PLCs to force our traffic lights to all turn green. Due to the way that the program logic is

structured and the fact that we wanted to keep the number of modifications minimal, our command

forces the lights to green but the red and yellow lights continue to cycle as normal. This creates a

somewhat confusing scenario where a driver looking at a light will see both the green and red lights

illuminated at times, but chaos and confusion is our goal. Plus, when the light cycles a minute later, the

only light they’ll see is green. Similarly, the traffic operators viewing the HMI will also see the multiple

active lights on their console.

Figure 11 - HMI During Malicious Operation

To recover from this malicious event, the attacker needs to reset the two “monitor” or override registers

to 0 (clearing the “OR” blocks to allow the normal logic tree to complete) or else the defenders need to

upload the original program logic onto the PLCs. Until either event takes place, the traffic lights will be

forced green regardless of any action the system operators take on the HMI.

Conclusions

Based on this example attack scenario, we wanted to highlight a few notes for defenders. A defender

could take several steps to detect, prevent, or recover from this attack. Each of these concepts were

covered during this defensive focused course. Putting these defensive concepts into practice is the most

important take-away from this scenario.

First, as recovery from an incident is the priority, the most direct way to recover from the attack would

be to upload known-good logic files from offline back-ups rather than try to decipher an attacker’s

obfuscated malware or logic file (that comes later). And since you have certified logic files archived

(right)? you are prepared for this event!

Second, ensuring your network architecture is structured appropriately will help to detect attacks and

defend your PLCs. Building your control system network in such a way as to limit the access to those

PLCs will help create virtual choke points in your network environment. Once you have this in place, you

can easily augment with network security monitoring to watch for anomalous traffic.

In our attack scenario, a network defender who was looking for unusual network traffic should have

easily been able to spot the write commands to the PLCs. How often are write commands sent in your

control system environment on a regular basis? We’d wager it’s probably not often or it’s only in

response to documented events. A basic intrusion detection system monitoring rule would have flagged

the attacker’s initial testing and the eventual triggering of the new override registers.

Finally, we’d like to point out that this attack scenario could potentially have been prevented if the

defenders used change management or file hashing to monitor their project files. We’re assuming that

the attacker didn’t directly upload the code onto the PLC (you’re capturing event logs from your PLCs to

look for those events, right? Of course you are!) and instead modified an at-rest project file and let the

system operators upload it into the control system as part of routine work. If the defenders had an

automated system to watch the file hashes of the project files, they would know in real-time whenever a

modification was made – and modifications should only be made in response to legitimate change

requests. Any unauthorized modification is either an attacker or someone making changes they’re not

supposed to – and that can cause just as much damage as the real bad guys.

Thanks to Rob Lee for teaching ICS515 and indulging us while we played with the Cybati kits as he taught

and thanks to Matthew Luallen for creating the Cybati kits that were so much fun to mess with!

